valentina/src/geometry/vspline.cpp
dismine 68b443fc7f After cppcheck.
--HG--
branch : develop
2014-01-27 17:48:11 +02:00

615 lines
19 KiB
C++

/************************************************************************
**
** @file vspline.cpp
** @author Roman Telezhinsky <dismine@gmail.com>
** @date November 15, 2013
**
** @brief
** @copyright
** This source code is part of the Valentine project, a pattern making
** program, whose allow create and modeling patterns of clothing.
** Copyright (C) 2013 Valentina project
** <https://bitbucket.org/dismine/valentina> All Rights Reserved.
**
** Valentina is free software: you can redistribute it and/or modify
** it under the terms of the GNU General Public License as published by
** the Free Software Foundation, either version 3 of the License, or
** (at your option) any later version.
**
** Valentina is distributed in the hope that it will be useful,
** but WITHOUT ANY WARRANTY; without even the implied warranty of
** MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
** GNU General Public License for more details.
**
** You should have received a copy of the GNU General Public License
** along with Valentina. If not, see <http://www.gnu.org/licenses/>.
**
*************************************************************************/
#include "vspline.h"
#include <QDebug>
VSpline::VSpline()
:VGObject(GObject::Spline), p1(VPointF()), p2(QPointF()), p3(QPointF()), p4(VPointF()), angle1(0), angle2(0),
kAsm1(1), kAsm2(1), kCurve(1){}
VSpline::VSpline ( const VSpline & spline )
:VGObject(spline), p1(spline.GetP1 ()), p2(spline.GetP2 ()), p3(spline.GetP3 ()), p4(spline.GetP4 ()),
angle1(spline.GetAngle1 ()), angle2(spline.GetAngle2 ()), kAsm1(spline.GetKasm1()), kAsm2(spline.GetKasm2()),
kCurve(spline.GetKcurve()){}
VSpline::VSpline (VPointF p1, VPointF p4, qreal angle1, qreal angle2, qreal kAsm1, qreal kAsm2, qreal kCurve,
qint64 idObject, Draw::Draws mode)
:VGObject(GObject::Spline, idObject, mode), p1(p1), p2(QPointF()), p3(QPointF()), p4(p4), angle1(angle1),
angle2(angle2), kAsm1(kAsm1), kAsm2(kAsm2), kCurve(kCurve)
{
CreateName();
this->p1 = p1;
this->p4 = p4;
this->angle1 = angle1;
this->angle2 = angle2;
this->kAsm1 = kAsm1;
this->kAsm2 = kAsm2;
this->kCurve = kCurve;
qreal L = 0, radius = 0, angle = 90;
QPointF point1 = GetP1().toQPointF();
QPointF point4 = GetP4().toQPointF();
radius = QLineF(point1, point4).length()/1.414213;//1.414213=sqrt(2);
L = kCurve * radius * 4 / 3 * tan( angle * M_PI / 180.0 / 4 );
QLineF p1p2(GetP1().x(), GetP1().y(), GetP1().x() + L * kAsm1, GetP1().y());
p1p2.setAngle(angle1);
QLineF p4p3(GetP4().x(), GetP4().y(), GetP4().x() + L * kAsm2, GetP4().y());
p4p3.setAngle(angle2);
this->p2 = p1p2.p2();
this->p3 = p4p3.p2();
}
VSpline::VSpline (VPointF p1, QPointF p2, QPointF p3, VPointF p4, qreal kCurve, qint64 idObject, Draw::Draws mode)
:VGObject(GObject::Spline, idObject, mode), p1(p1), p2(p2), p3(p3), p4(p4), angle1(0), angle2(0), kAsm1(1),
kAsm2(1), kCurve(1)
{
CreateName();
this->p1 = p1;
this->p2 = p2;
this->p3 = p3;
this->p4 = p4;
this->angle1 = QLineF ( GetP1().toQPointF(), p2 ).angle();
this->angle2 = QLineF ( GetP4().toQPointF(), p3 ).angle();
qreal L = 0, radius = 0, angle = 90;
QPointF point1 = GetP1().toQPointF();
QPointF point4 = GetP4().toQPointF();
radius = QLineF(point1, point4).length()/1.414213;//1.414213=sqrt(2);
L = kCurve * radius * 4 / 3 * tan( angle * M_PI / 180.0 / 4 );
this->kCurve = kCurve;
this->kAsm1 = QLineF ( GetP1().toQPointF(), p2 ).length()/L;
this->kAsm2 = QLineF ( GetP4().toQPointF(), p3 ).length()/L;
}
qreal VSpline::GetLength () const
{
return LengthBezier ( GetP1().toQPointF(), this->p2, this->p3, GetP4().toQPointF());
}
QString VSpline::name() const
{
return _name;
}
QLineF::IntersectType VSpline::CrossingSplLine ( const QLineF &line, QPointF *intersectionPoint ) const
{
QVector<qreal> px;
QVector<qreal> py;
px.append ( GetP1 ().x () );
py.append ( GetP1 ().y () );
QVector<qreal>& wpx = px;
QVector<qreal>& wpy = py;
PointBezier_r ( GetP1 ().x (), GetP1 ().y (), GetP2 ().x (), GetP2 ().y (),
GetP3 ().x (), GetP3 ().y (), GetP4 ().x (), GetP4 ().y (),
0, wpx, wpy);
px.append ( GetP4 ().x () );
py.append ( GetP4 ().y () );
qint32 i = 0;
QPointF crosPoint;
QLineF::IntersectType type = QLineF::NoIntersection;
for ( i = 0; i < px.count()-1; ++i )
{
type = line.intersect(QLineF ( QPointF ( px[i], py[i] ),
QPointF ( px[i+1], py[i+1] )), &crosPoint);
if ( type == QLineF::BoundedIntersection )
{
*intersectionPoint = crosPoint;
return type;
}
}
throw "Can't found point of intersection spline and line.";
}
qreal VSpline::LengthT(qreal t) const
{
if (t < 0 || t > 1)
{
qWarning()<<"Wrong value t.";
return 0;
}
QLineF seg1_2 ( GetP1 ().toQPointF(), GetP2 () );
seg1_2.setLength(seg1_2.length () * t);
QPointF p12 = seg1_2.p2();
QLineF seg2_3 ( GetP2 (), GetP3 () );
seg2_3.setLength(seg2_3.length () * t);
QPointF p23 = seg2_3.p2();
QLineF seg12_23 ( p12, p23 );
seg12_23.setLength(seg12_23.length () * t);
QPointF p123 = seg12_23.p2();
QLineF seg3_4 ( GetP3 (), GetP4 ().toQPointF() );
seg3_4.setLength(seg3_4.length () * t);
QPointF p34 = seg3_4.p2();
QLineF seg23_34 ( p23, p34 );
seg23_34.setLength(seg23_34.length () * t);
QPointF p234 = seg23_34.p2();
QLineF seg123_234 ( p123, p234 );
seg123_234.setLength(seg123_234.length () * t);
QPointF p1234 = seg123_234.p2();
return LengthBezier ( GetP1().toQPointF(), p12, p123, p1234);
}
QPointF VSpline::CutSpline ( qreal length, QPointF &spl1p2, QPointF &spl1p3, QPointF &spl2p2, QPointF &spl2p3 ) const
{
//Always need return two splines, so we must correct wrong length.
if (length < GetLength()*0.02)
{
length = GetLength()*0.02;
}
else if ( length > GetLength()*0.98)
{
length = GetLength()*0.98;
}
// Very stupid way find correct value of t.
// Better first compare with t = 0.5. Find length of spline.
// If length larger, take t = 0.75 and so on.
// If length less, take t = 0.25 and so on.
qreal parT = 0;
qreal step = 0.001;
while (1)
{
parT = parT + step;
qreal splLength = LengthT(parT);
if (splLength >= length || parT > 1)
{
break;
}
}
QLineF seg1_2 ( GetP1 ().toQPointF(), GetP2 () );
seg1_2.setLength(seg1_2.length () * parT);
QPointF p12 = seg1_2.p2();
QLineF seg2_3 ( GetP2 (), GetP3 () );
seg2_3.setLength(seg2_3.length () * parT);
QPointF p23 = seg2_3.p2();
QLineF seg12_23 ( p12, p23 );
seg12_23.setLength(seg12_23.length () * parT);
QPointF p123 = seg12_23.p2();
QLineF seg3_4 ( GetP3 (), GetP4 ().toQPointF() );
seg3_4.setLength(seg3_4.length () * parT);
QPointF p34 = seg3_4.p2();
QLineF seg23_34 ( p23, p34 );
seg23_34.setLength(seg23_34.length () * parT);
QPointF p234 = seg23_34.p2();
QLineF seg123_234 ( p123, p234 );
seg123_234.setLength(seg123_234.length () * parT);
QPointF p1234 = seg123_234.p2();
spl1p2 = p12;
spl1p3 = p123;
spl2p2 = p234;
spl2p3 = p34;
return p1234;
}
QVector<QPointF> VSpline::GetPoints () const
{
return GetPoints(GetP1().toQPointF(), p2, p3, GetP4().toQPointF());
}
QVector<QPointF> VSpline::GetPoints (const QPointF &p1, const QPointF &p2, const QPointF &p3, const QPointF &p4)
{
QVector<QPointF> pvector;
QVector<qreal> x;
QVector<qreal> y;
QVector<qreal>& wx = x;
QVector<qreal>& wy = y;
x.append ( p1.x () );
y.append ( p1.y () );
PointBezier_r ( p1.x (), p1.y (), p2.x (), p2.y (),
p3.x (), p3.y (), p4.x (), p4.y (), 0, wx, wy );
x.append ( p4.x () );
y.append ( p4.y () );
for ( qint32 i = 0; i < x.count(); ++i )
{
pvector.append( QPointF ( x[i], y[i] ) );
}
return pvector;
}
qreal VSpline::LengthBezier ( const QPointF &p1, const QPointF &p2, const QPointF &p3, const QPointF &p4 ) const
{
QPainterPath splinePath;
QVector<QPointF> points = GetPoints (p1, p2, p3, p4);
splinePath.moveTo(points[0]);
for (qint32 i = 1; i < points.count(); ++i)
{
splinePath.lineTo(points[i]);
}
return splinePath.length();
}
void VSpline::PointBezier_r ( qreal x1, qreal y1, qreal x2, qreal y2,
qreal x3, qreal y3, qreal x4, qreal y4,
qint16 level, QVector<qreal> &px, QVector<qreal> &py)
{
const double curve_collinearity_epsilon = 1e-30;
const double curve_angle_tolerance_epsilon = 0.01;
const double m_angle_tolerance = 0.0;
enum curve_recursion_limit_e { curve_recursion_limit = 32 };
const double m_cusp_limit = 0.0;
double m_approximation_scale = 1.0;
double m_distance_tolerance_square;
m_distance_tolerance_square = 0.5 / m_approximation_scale;
m_distance_tolerance_square *= m_distance_tolerance_square;
if (level > curve_recursion_limit)
{
return;
}
// Calculate all the mid-points of the line segments
//----------------------
double x12 = (x1 + x2) / 2;
double y12 = (y1 + y2) / 2;
double x23 = (x2 + x3) / 2;
double y23 = (y2 + y3) / 2;
double x34 = (x3 + x4) / 2;
double y34 = (y3 + y4) / 2;
double x123 = (x12 + x23) / 2;
double y123 = (y12 + y23) / 2;
double x234 = (x23 + x34) / 2;
double y234 = (y23 + y34) / 2;
double x1234 = (x123 + x234) / 2;
double y1234 = (y123 + y234) / 2;
// Try to approximate the full cubic curve by a single straight line
//------------------
double dx = x4-x1;
double dy = y4-y1;
double d2 = fabs((x2 - x4) * dy - (y2 - y4) * dx);
double d3 = fabs((x3 - x4) * dy - (y3 - y4) * dx);
double da1, da2, k;
switch ((static_cast<int>(d2 > curve_collinearity_epsilon) << 1) +
static_cast<int>(d3 > curve_collinearity_epsilon))
{
case 0:
// All collinear OR p1==p4
//----------------------
k = dx*dx + dy*dy;
if (k < 0.000000001)
{
d2 = CalcSqDistance(x1, y1, x2, y2);
d3 = CalcSqDistance(x4, y4, x3, y3);
}
else
{
k = 1 / k;
da1 = x2 - x1;
da2 = y2 - y1;
d2 = k * (da1*dx + da2*dy);
da1 = x3 - x1;
da2 = y3 - y1;
d3 = k * (da1*dx + da2*dy);
// cppcheck-suppress incorrectLogicOperator
if (d2 > 0 && d2 < 1 && d3 > 0 && d3 < 1)
{
// Simple collinear case, 1---2---3---4
// We can leave just two endpoints
return;
}
if (d2 <= 0)
{
d2 = CalcSqDistance(x2, y2, x1, y1);
}
else if (d2 >= 1)
{
d2 = CalcSqDistance(x2, y2, x4, y4);
}
else
{
d2 = CalcSqDistance(x2, y2, x1 + d2*dx, y1 + d2*dy);
}
if (d3 <= 0)
{
d3 = CalcSqDistance(x3, y3, x1, y1);
}
else if (d3 >= 1)
{
d3 = CalcSqDistance(x3, y3, x4, y4);
}
else
{
d3 = CalcSqDistance(x3, y3, x1 + d3*dx, y1 + d3*dy);
}
}
if (d2 > d3)
{
if (d2 < m_distance_tolerance_square)
{
px.append(x2);
py.append(y2);
//m_points.add(point_d(x2, y2));
return;
}
}
else
{
if (d3 < m_distance_tolerance_square)
{
px.append(x3);
py.append(y3);
//m_points.add(point_d(x3, y3));
return;
}
}
break;
case 1:
// p1,p2,p4 are collinear, p3 is significant
//----------------------
if (d3 * d3 <= m_distance_tolerance_square * (dx*dx + dy*dy))
{
if (m_angle_tolerance < curve_angle_tolerance_epsilon)
{
px.append(x23);
py.append(y23);
//m_points.add(point_d(x23, y23));
return;
}
// Angle Condition
//----------------------
da1 = fabs(atan2(y4 - y3, x4 - x3) - atan2(y3 - y2, x3 - x2));
if (da1 >= M_PI)
{
da1 = 2*M_PI - da1;
}
if (da1 < m_angle_tolerance)
{
px.append(x2);
py.append(y2);
px.append(x3);
py.append(y3);
//m_points.add(point_d(x2, y2));
//m_points.add(point_d(x3, y3));
return;
}
if (m_cusp_limit > 0.0 || m_cusp_limit < 0.0)
{
if (da1 > m_cusp_limit)
{
px.append(x3);
py.append(y3);
//m_points.add(point_d(x3, y3));
return;
}
}
}
break;
case 2:
// p1,p3,p4 are collinear, p2 is significant
//----------------------
if (d2 * d2 <= m_distance_tolerance_square * (dx*dx + dy*dy))
{
if (m_angle_tolerance < curve_angle_tolerance_epsilon)
{
px.append(x23);
py.append(y23);
//m_points.add(point_d(x23, y23));
return;
}
// Angle Condition
//----------------------
da1 = fabs(atan2(y3 - y2, x3 - x2) - atan2(y2 - y1, x2 - x1));
if (da1 >= M_PI)
{
da1 = 2*M_PI - da1;
}
if (da1 < m_angle_tolerance)
{
px.append(x2);
py.append(y2);
px.append(x3);
py.append(y3);
//m_points.add(point_d(x2, y2));
//m_points.add(point_d(x3, y3));
return;
}
if (m_cusp_limit > 0.0 || m_cusp_limit < 0.0)
{
if (da1 > m_cusp_limit)
{
px.append(x2);
py.append(y2);
//m_points.add(point_d(x2, y2));
return;
}
}
}
break;
case 3:
// Regular case
//-----------------
if ((d2 + d3)*(d2 + d3) <= m_distance_tolerance_square * (dx*dx + dy*dy))
{
// If the curvature doesn't exceed the distance_tolerance value
// we tend to finish subdivisions.
//----------------------
if (m_angle_tolerance < curve_angle_tolerance_epsilon)
{
px.append(x23);
py.append(y23);
//m_points.add(point_d(x23, y23));
return;
}
// Angle & Cusp Condition
//----------------------
k = atan2(y3 - y2, x3 - x2);
da1 = fabs(k - atan2(y2 - y1, x2 - x1));
da2 = fabs(atan2(y4 - y3, x4 - x3) - k);
if (da1 >= M_PI)
{
da1 = 2*M_PI - da1;
}
if (da2 >= M_PI)
{
da2 = 2*M_PI - da2;
}
if (da1 + da2 < m_angle_tolerance)
{
// Finally we can stop the recursion
//----------------------
px.append(x23);
py.append(y23);
//m_points.add(point_d(x23, y23));
return;
}
if (m_cusp_limit > 0.0 || m_cusp_limit < 0.0)
{
if (da1 > m_cusp_limit)
{
px.append(x2);
py.append(y2);
return;
}
if (da2 > m_cusp_limit)
{
px.append(x3);
py.append(y3);
return;
}
}
}
break;
default:
break;
}
// Continue subdivision
//----------------------
PointBezier_r(x1, y1, x12, y12, x123, y123, x1234, y1234, static_cast<qint16>(level + 1), px, py);
PointBezier_r(x1234, y1234, x234, y234, x34, y34, x4, y4, static_cast<qint16>(level + 1), px, py);
}
qreal VSpline::CalcSqDistance (qreal x1, qreal y1, qreal x2, qreal y2)
{
qreal dx = x2 - x1;
qreal dy = y2 - y1;
return dx * dx + dy * dy;
}
void VSpline::CreateName()
{
_name = QString("Spl_%1_%2").arg(this->GetP1().name(), this->GetP4().name());
}
QPainterPath VSpline::GetPath() const
{
QPainterPath splinePath;
QVector<QPointF> points = GetPoints ();
if (points.count() >= 2)
{
for (qint32 i = 0; i < points.count()-1; ++i)
{
splinePath.moveTo(points[i]);
splinePath.lineTo(points[i+1]);
}
}
else
{
qWarning()<<"points.count() < 2"<<Q_FUNC_INFO;
}
return splinePath;
}
QVector<QPointF> VSpline::SplinePoints(const QPointF &p1, const QPointF &p4, qreal angle1, qreal angle2, qreal kAsm1,
qreal kAsm2, qreal kCurve)
{
QLineF p1pX(p1.x(), p1.y(), p1.x() + 100, p1.y());
p1pX.setAngle( angle1 );
qreal L = 0, radius = 0, angle = 90;
radius = QLineF(QPointF(p1.x(), p4.y()), p4).length();
L = kCurve * radius * 4 / 3 * tan( angle * M_PI / 180.0 / 4 );
QLineF p1p2(p1.x(), p1.y(), p1.x() + L * kAsm1, p1.y());
p1p2.setAngle(angle1);
QLineF p4p3(p4.x(), p4.y(), p4.x() + L * kAsm2, p4.y());
p4p3.setAngle(angle2);
QPointF p2 = p1p2.p2();
QPointF p3 = p4p3.p2();
return GetPoints(p1, p2, p3, p4);
}
VSpline &VSpline::operator =(const VSpline &spline)
{
VGObject::operator=(spline);
this->p1 = spline.GetP1 ();
this->p2 = spline.GetP2 ();
this->p3 = spline.GetP3 ();
this->p4 = spline.GetP4 ();
this->angle1 = spline.GetAngle1 ();
this->angle2 = spline.GetAngle2 ();
this->kAsm1 = spline.GetKasm1();
this->kAsm2 = spline.GetKasm2();
this->kCurve = spline.GetKcurve();
return *this;
}