valentina/src/libs/vgeometry/varc.cpp
2024-02-20 09:17:20 +02:00

633 lines
20 KiB
C++

/************************************************************************
**
** @file varc.cpp
** @author Roman Telezhynskyi <dismine(at)gmail.com>
** @date November 15, 2013
**
** @brief
** @copyright
** This source code is part of the Valentina project, a pattern making
** program, whose allow create and modeling patterns of clothing.
** Copyright (C) 2013-2015 Valentina project
** <https://gitlab.com/smart-pattern/valentina> All Rights Reserved.
**
** Valentina is free software: you can redistribute it and/or modify
** it under the terms of the GNU General Public License as published by
** the Free Software Foundation, either version 3 of the License, or
** (at your option) any later version.
**
** Valentina is distributed in the hope that it will be useful,
** but WITHOUT ANY WARRANTY; without even the implied warranty of
** MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
** GNU General Public License for more details.
**
** You should have received a copy of the GNU General Public License
** along with Valentina. If not, see <http://www.gnu.org/licenses/>.
**
*************************************************************************/
#include "varc.h"
#include <QLineF>
#include <QPointF>
#include <QtDebug>
#include "../ifc/exception/vexception.h"
#include "../ifc/ifcdef.h"
#include "../vmisc/compatibility.h"
#include "../vmisc/def.h"
#include "../vmisc/defglobal.h"
#include "../vmisc/vabstractapplication.h"
#include "../vmisc/vmath.h"
#include "vabstractcurve.h"
#include "varc_p.h"
#include "vspline.h"
//---------------------------------------------------------------------------------------------------------------------
/**
* @brief VArc default constructor.
*/
VArc::VArc()
: VAbstractArc(GOType::Arc),
d(new VArcData)
{
}
//---------------------------------------------------------------------------------------------------------------------
/**
* @brief VArc constructor.
* @param center center point.
* @param radius arc radius.
* @param f1 start angle (degree).
* @param f2 end angle (degree).
*/
VArc::VArc(const VPointF &center, qreal radius, const QString &formulaRadius, qreal f1, const QString &formulaF1,
qreal f2, const QString &formulaF2, quint32 idObject, Draw mode)
: VAbstractArc(GOType::Arc, center, f1, formulaF1, f2, formulaF2, idObject, mode),
d(new VArcData(radius, formulaRadius))
{
CreateName();
SetFlipped(radius < 0);
}
//---------------------------------------------------------------------------------------------------------------------
VArc::VArc(const VPointF &center, qreal radius, qreal f1, qreal f2)
: VAbstractArc(GOType::Arc, center, f1, f2, NULL_ID, Draw::Calculation),
d(new VArcData(radius))
{
CreateName();
SetFlipped(radius < 0);
}
//---------------------------------------------------------------------------------------------------------------------
VArc::VArc(qreal length, const QString &formulaLength, const VPointF &center, qreal radius,
const QString &formulaRadius, qreal f1, const QString &formulaF1, quint32 idObject, Draw mode)
: VAbstractArc(GOType::Arc, formulaLength, center, f1, formulaF1, idObject, mode),
d(new VArcData(radius, formulaRadius))
{
CreateName();
FindF2(length);
}
//---------------------------------------------------------------------------------------------------------------------
VArc::VArc(qreal length, const VPointF &center, qreal radius, qreal f1)
: VAbstractArc(GOType::Arc, center, f1, NULL_ID, Draw::Calculation),
d(new VArcData(radius))
{
CreateName();
FindF2(length);
}
//---------------------------------------------------------------------------------------------------------------------
COPY_CONSTRUCTOR_IMPL_2(VArc, VAbstractArc)
//---------------------------------------------------------------------------------------------------------------------
/**
* @brief operator = assignment operator
* @param arc arc
* @return arc
*/
auto VArc::operator=(const VArc &arc) -> VArc &
{
if (&arc == this)
{
return *this;
}
VAbstractArc::operator=(arc);
d = arc.d;
return *this;
}
//---------------------------------------------------------------------------------------------------------------------
VArc::VArc(VArc &&arc) noexcept
: VAbstractArc(std::move(arc)),
d(std::move(arc.d)) // NOLINT(bugprone-use-after-move)
{
}
//---------------------------------------------------------------------------------------------------------------------
auto VArc::operator=(VArc &&arc) noexcept -> VArc &
{
VAbstractArc::operator=(arc);
std::swap(d, arc.d);
return *this;
}
//---------------------------------------------------------------------------------------------------------------------
auto VArc::Rotate(const QPointF &originPoint, qreal degrees, const QString &prefix) const -> VArc
{
const VPointF center = GetCenter().Rotate(originPoint, degrees);
const QPointF p1 = VPointF::RotatePF(originPoint, GetP1(), degrees);
const QPointF p2 = VPointF::RotatePF(originPoint, GetP2(), degrees);
const qreal f1 = QLineF(static_cast<QPointF>(center), p1).angle();
const qreal f2 = QLineF(static_cast<QPointF>(center), p2).angle();
VArc arc(center, d->radius, f1, f2);
arc.setName(name() + prefix);
if (not GetAliasSuffix().isEmpty())
{
arc.SetAliasSuffix(GetAliasSuffix() + prefix);
}
arc.SetColor(GetColor());
arc.SetPenStyle(GetPenStyle());
arc.SetFlipped(IsFlipped());
arc.SetApproximationScale(GetApproximationScale());
return arc;
}
//---------------------------------------------------------------------------------------------------------------------
auto VArc::Flip(const QLineF &axis, const QString &prefix) const -> VArc
{
const VPointF center = GetCenter().Flip(axis);
const QPointF p1 = VPointF::FlipPF(axis, GetP1());
const QPointF p2 = VPointF::FlipPF(axis, GetP2());
const qreal f1 = QLineF(static_cast<QPointF>(center), p1).angle();
const qreal f2 = QLineF(static_cast<QPointF>(center), p2).angle();
VArc arc(center, d->radius, f1, f2);
arc.setName(name() + prefix);
if (not GetAliasSuffix().isEmpty())
{
arc.SetAliasSuffix(GetAliasSuffix() + prefix);
}
arc.SetColor(GetColor());
arc.SetPenStyle(GetPenStyle());
arc.SetFlipped(not IsFlipped());
arc.SetApproximationScale(GetApproximationScale());
return arc;
}
//---------------------------------------------------------------------------------------------------------------------
auto VArc::Move(qreal length, qreal angle, const QString &prefix) const -> VArc
{
const VPointF center = GetCenter().Move(length, angle);
const QPointF p1 = VPointF::MovePF(GetP1(), length, angle);
const QPointF p2 = VPointF::MovePF(GetP2(), length, angle);
const qreal f1 = QLineF(static_cast<QPointF>(center), p1).angle();
const qreal f2 = QLineF(static_cast<QPointF>(center), p2).angle();
VArc arc(center, d->radius, f1, f2);
arc.setName(name() + prefix);
if (not GetAliasSuffix().isEmpty())
{
arc.SetAliasSuffix(GetAliasSuffix() + prefix);
}
arc.SetColor(GetColor());
arc.SetPenStyle(GetPenStyle());
arc.SetFlipped(IsFlipped());
arc.SetApproximationScale(GetApproximationScale());
return arc;
}
//---------------------------------------------------------------------------------------------------------------------
VArc::~VArc() = default;
//---------------------------------------------------------------------------------------------------------------------
/**
* @brief GetLength return arc length.
* @return length.
*/
auto VArc::GetLength() const -> qreal
{
qreal length = qAbs(d->radius) * qDegreesToRadians(AngleArc());
if (IsFlipped())
{
length *= -1;
}
return length;
}
//---------------------------------------------------------------------------------------------------------------------
/**
* @brief GetP1 return point associated with start angle.
* @return point.
*/
auto VArc::GetP1() const -> QPointF
{
QPointF const p1(GetCenter().x() + qAbs(d->radius), GetCenter().y());
QLineF centerP1(static_cast<QPointF>(GetCenter()), p1);
centerP1.setAngle(GetStartAngle());
return centerP1.p2();
}
//---------------------------------------------------------------------------------------------------------------------
/**
* @brief GetP2 return point associated with end angle.
* @return точку point.
*/
auto VArc::GetP2() const -> QPointF
{
QPointF const p2(GetCenter().x() + qAbs(d->radius), GetCenter().y());
QLineF centerP2(static_cast<QPointF>(GetCenter()), p2);
centerP2.setAngle(GetEndAngle());
return centerP2.p2();
}
//---------------------------------------------------------------------------------------------------------------------
/**
* @brief GetPoints return list of points needed for drawing arc.
* @return list of points
*/
auto VArc::GetPoints() const -> QVector<QPointF>
{
if (qFuzzyIsNull(d->radius))
{
return {GetCenter().toQPointF()};
}
QVector<QPointF> points;
QVector<qreal> sectionAngle;
QPointF pStart = IsFlipped() ? GetP2() : GetP1();
{
qreal angle = AngleArc();
if (qFuzzyIsNull(angle))
{
points.append(pStart);
return points;
}
if (angle > 360 || angle < 0)
{ // Filter incorect value
QLineF dummy(0, 0, 100, 0);
dummy.setAngle(angle);
angle = dummy.angle();
}
const qreal angleInterpolation = 45; // degree
const int sections = qFloor(angle / angleInterpolation);
sectionAngle.reserve(sections + 1);
for (int i = 0; i < sections; ++i)
{
sectionAngle.append(angleInterpolation);
}
const qreal tail = angle - sections * angleInterpolation;
if (tail > 0)
{
sectionAngle.append(tail);
}
}
for (int i = 0; i < sectionAngle.size(); ++i)
{
const qreal lDistance = qAbs(d->radius) * 4.0 / 3.0 * qTan(qDegreesToRadians(sectionAngle.at(i)) * 0.25);
const QPointF center = static_cast<QPointF>(GetCenter());
QLineF lineP1P2(pStart, center);
lineP1P2.setAngle(lineP1P2.angle() - 90.0);
lineP1P2.setLength(lDistance);
QLineF lineP4P3(center, pStart);
lineP4P3.setAngle(lineP4P3.angle() + sectionAngle.at(i));
lineP4P3.setLength(qAbs(d->radius)); // in case of computing error
lineP4P3 = QLineF(lineP4P3.p2(), center);
lineP4P3.setAngle(lineP4P3.angle() + 90.0);
lineP4P3.setLength(lDistance);
VSpline spl(VPointF(pStart), lineP1P2.p2(), lineP4P3.p2(), VPointF(lineP4P3.p1()), 1.0);
spl.SetApproximationScale(GetApproximationScale());
QVector<QPointF> splPoints = spl.GetPoints();
if (not splPoints.isEmpty() && i != sectionAngle.size() - 1)
{
splPoints.removeLast();
}
points << splPoints;
pStart = lineP4P3.p1();
}
return IsFlipped() ? Reverse(points) : points;
}
//---------------------------------------------------------------------------------------------------------------------
/**
* @brief CutArc cut arc into two arcs.
* @param length length first arc.
* @param arc1 first arc.
* @param arc2 second arc.
* @param pointName cutting point name.
* @return point cutting
*/
auto VArc::CutArc(qreal length, VArc &arc1, VArc &arc2, const QString &pointName) const -> QPointF
{
const qreal fullLength = GetLength();
if (qFuzzyIsNull(fullLength) || qFuzzyIsNull(d->radius))
{
arc1 = *this;
arc2 = *this;
return GetCenter().toQPointF();
}
if (qFuzzyIsNull(length) || qFuzzyIsNull(length + fullLength))
{
arc1 = VArc(GetCenter(), d->radius, d->formulaRadius, GetStartAngle(), GetFormulaF1(), GetStartAngle(),
GetFormulaF1(), getIdObject(), getMode());
arc1.SetApproximationScale(GetApproximationScale());
arc1.SetFlipped(IsFlipped());
arc1.SetAllowEmpty(true);
arc2 = *this;
return GetP1();
}
if (VFuzzyComparePossibleNulls(length, fullLength))
{
arc1 = *this;
arc2 = VArc(GetCenter(), d->radius, d->formulaRadius, GetEndAngle(), GetFormulaF2(), GetEndAngle(),
GetFormulaF2(), getIdObject(), getMode());
arc2.SetApproximationScale(GetApproximationScale());
arc2.SetFlipped(IsFlipped());
arc2.SetAllowEmpty(true);
return GetP2();
}
QLineF const line =
not IsFlipped() ? CutPoint(length, fullLength, pointName) : CutPointFlipped(length, fullLength, pointName);
arc1 = VArc(GetCenter(), d->radius, d->formulaRadius, GetStartAngle(), GetFormulaF1(), line.angle(),
QString().setNum(line.angle()), getIdObject(), getMode());
arc1.SetApproximationScale(GetApproximationScale());
arc1.SetFlipped(IsFlipped());
arc2 = VArc(GetCenter(), d->radius, d->formulaRadius, line.angle(), QString().setNum(line.angle()), GetEndAngle(),
GetFormulaF2(), getIdObject(), getMode());
arc2.SetApproximationScale(GetApproximationScale());
arc2.SetFlipped(IsFlipped());
return line.p2();
}
//---------------------------------------------------------------------------------------------------------------------
auto VArc::CutArc(qreal length, const QString &pointName) const -> QPointF
{
VArc arc1;
VArc arc2;
return CutArc(length, arc1, arc2, pointName);
}
//---------------------------------------------------------------------------------------------------------------------
auto VArc::OptimalApproximationScale(qreal radius, qreal f1, qreal f2, qreal tolerance) -> qreal
{
if (qFuzzyIsNull(radius))
{
return maxCurveApproximationScale;
}
const qreal expectedCurvature = 1 / qAbs(radius);
qreal scale = minCurveApproximationScale;
do
{
VArc arc(VPointF(), radius, f1, f2);
arc.SetApproximationScale(scale);
qreal const curvature = Curvature(arc.GetPoints());
if (expectedCurvature - curvature <= expectedCurvature * tolerance)
{
return scale;
}
scale += 0.1;
} while (scale <= maxCurveApproximationScale);
return maxCurveApproximationScale;
}
//---------------------------------------------------------------------------------------------------------------------
void VArc::CreateName()
{
QString name = ARC_ + this->GetCenter().name();
const QString nameStr = QStringLiteral("_%1");
if (getMode() == Draw::Modeling && getIdObject() != NULL_ID)
{
name += nameStr.arg(getIdObject());
}
else if (VAbstractCurve::id() != NULL_ID)
{
name += nameStr.arg(VAbstractCurve::id());
}
if (GetDuplicate() > 0)
{
name += nameStr.arg(GetDuplicate());
}
setName(name);
}
//---------------------------------------------------------------------------------------------------------------------
void VArc::CreateAlias()
{
const QString aliasSuffix = GetAliasSuffix();
if (aliasSuffix.isEmpty())
{
SetAlias(QString());
return;
}
SetAlias(ARC_ + aliasSuffix);
}
//---------------------------------------------------------------------------------------------------------------------
void VArc::FindF2(qreal length)
{
SetFlipped(length < 0 || d->radius < 0);
if (qAbs(length) >= qAbs(MaxLength()))
{
length = MaxLength();
}
qreal arcAngle = qAbs(qRadiansToDegrees(qAbs(length) / qAbs(d->radius)));
if (IsFlipped())
{
arcAngle = arcAngle * -1;
}
QLineF startAngle(0, 0, 100, 0);
startAngle.setAngle(GetStartAngle() + arcAngle); // We use QLineF just because it is easy way to correct angle value
SetFormulaF2(QString::number(startAngle.angle()), startAngle.angle());
}
//---------------------------------------------------------------------------------------------------------------------
auto VArc::MaxLength() const -> qreal
{
return M_2PI * d->radius;
}
//---------------------------------------------------------------------------------------------------------------------
auto VArc::CutPoint(qreal length, qreal fullLength, const QString &pointName) const -> QLineF
{
if (length < 0)
{
length = fullLength + length;
}
if (length < 0)
{
QString errorMsg;
if (not pointName.isEmpty())
{
errorMsg = tr("Curve '%1'. Length of a cut segment (%2) is too small. Optimize it to minimal value.")
.arg(name(), pointName);
}
else
{
errorMsg =
tr("Curve '%1'. Length of a cut segment is too small. Optimize it to minimal value.").arg(name());
}
VAbstractApplication::VApp()->IsPedantic()
? throw VException(errorMsg)
: qWarning() << VAbstractApplication::warningMessageSignature + errorMsg;
}
else if (length > fullLength)
{
QString errorMsg;
if (not pointName.isEmpty())
{
errorMsg = tr("Curve '%1'. Length of a cut segment (%2) is too big. Optimize it to maximal value.")
.arg(name(), pointName);
}
else
{
errorMsg = tr("Curve '%1'. Length of a cut segment is too big. Optimize it to maximal value.").arg(name());
}
VAbstractApplication::VApp()->IsPedantic()
? throw VException(errorMsg)
: qWarning() << VAbstractApplication::warningMessageSignature + errorMsg;
}
if (qFuzzyIsNull(d->radius))
{
return {static_cast<QPointF>(GetCenter()), static_cast<QPointF>(GetCenter())};
}
length = qBound(0.0, length, fullLength);
QLineF line(static_cast<QPointF>(GetCenter()), GetP1());
line.setAngle(line.angle() + qRadiansToDegrees(length / d->radius));
return line;
}
//---------------------------------------------------------------------------------------------------------------------
auto VArc::CutPointFlipped(qreal length, qreal fullLength, const QString &pointName) const -> QLineF
{
if (length > 0)
{
length = fullLength + length;
}
if (length < fullLength)
{
QString errorMsg;
if (not pointName.isEmpty())
{
errorMsg = tr("Curve '%1'. Length of a cut segment (%2) is too small. Optimize it to minimal value.")
.arg(name(), pointName);
}
else
{
errorMsg =
tr("Curve '%1'. Length of a cut segment is too small. Optimize it to minimal value.").arg(name());
}
VAbstractApplication::VApp()->IsPedantic()
? throw VException(errorMsg)
: qWarning() << VAbstractApplication::warningMessageSignature + errorMsg;
}
else if (length > 0)
{
QString errorMsg;
if (not pointName.isEmpty())
{
errorMsg = tr("Curve '%1'. Length of a cut segment (%2) is too big. Optimize it to maximal value.")
.arg(name(), errorMsg);
}
else
{
errorMsg = tr("Curve '%1'. Length of a cut segment is too big. Optimize it to maximal value.").arg(name());
}
VAbstractApplication::VApp()->IsPedantic()
? throw VException(errorMsg)
: qWarning() << VAbstractApplication::warningMessageSignature + errorMsg;
}
if (qFuzzyIsNull(d->radius))
{
return {static_cast<QPointF>(GetCenter()), static_cast<QPointF>(GetCenter())};
}
length = qBound(fullLength, length, 0.0);
QLineF line(static_cast<QPointF>(GetCenter()), GetP1());
line.setAngle(line.angle() - qRadiansToDegrees(qAbs(length) / d->radius));
return line;
}
//---------------------------------------------------------------------------------------------------------------------
/**
* @brief GetRadius return arc radius.
* @return radius.
*/
auto VArc::GetFormulaRadius() const -> QString
{
return d->formulaRadius;
}
//---------------------------------------------------------------------------------------------------------------------
void VArc::SetFormulaRadius(const QString &formula, qreal value)
{
d->formulaRadius = formula;
d->radius = value;
}
//---------------------------------------------------------------------------------------------------------------------
/**
* @brief GetRadius return formula for radius.
* @return string with formula.
*/
auto VArc::GetRadius() const -> qreal
{
return d->radius;
}